All patients with aortic stenosis requiring a bioprosthetic heart valve should have a TAVR

It has Already Happened and Is Justified!

Pieter Kappetein, Erasmus MC, Rotterdam, The Netherlands
Study Devices

Transfemoral
- Edwards SAPIEN THV
 - 23 and 26 mm valves

Transapical
- RetroFlex 1
 - 22 and 24 F sheaths
- Ascendra
 - 24 and 26 F sheaths
PARTNER Study Design

Symptomatic Severe Aortic Stenosis

ASSESSMENT: High-Risk AVR Candidate
3,105 Total Patients Screened

Total = 1,057 patients
2 Parallel Trials: Individually Powered

High Risk

ASSESSMENT: Transfemoral Access

Yes

Transfemoral (TF)

1:1 Randomization

N = 244

TF TAVR

No

Transapical (TA)

1:1 Randomization

N = 248

TA TAVR

VS

SAVR

Primary Endpoint: All-Cause Mortality at 1 yr (Non-inferiority)

Inoperable

ASSESSMENT: Transfemoral Access

Yes

Transfemoral Access

N = 179

TF TAVR

No

Not In Study

N = 179

SAVR

Primary Endpoint: All-Cause Mortality Over Length of Trial (Superiority)
Co-Primary Endpoint: Composite of All-Cause Mortality and Repeat Hospitalization (Superiority)

N = 104

TA TAVR

VS

SAVR

N = 103

SAVR

N = 699

N = 358
Study Flow

Randomized = 699 patients

Transfemoral
n = 492

TF = 492 (70%)
TA = 207 (30%)

TAVR (244)

5 Years
Alive = 81
Dead = 150
LTFU = 4
Withdrawal = 3
Censored* = 6

Follow-up Compliance
98.3%

SAVR (248)

5 Years
Alive = 69
Dead = 142
LTFU = 10
Withdrawal = 19
Censored* = 8

Follow-up Compliance
95.6%

Transapical
n = 207

TAVR (104)

5 Years
Alive = 21
Dead = 79
LTFU = 1
Withdrawal = 1
Censored* = 2

Follow-up Compliance
99.0%

SAVR (103)

5 Years
Alive = 33
Dead = 56
LTFU = 2
Withdrawal = 11
Censored* = 1

Follow-up Compliance
97.8%

* Censored = Patient alive at last contact but no information available within FU window
Baseline Patient Characteristics

Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TAVR (n=348)</th>
<th>SAVR (n=351)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – years (Mean ± SD)</td>
<td>83.6 ± 6.8</td>
<td>84.5 ± 6.4</td>
</tr>
<tr>
<td>Male</td>
<td>201 (57.8%)</td>
<td>198 (56.7%)</td>
</tr>
<tr>
<td>NYHA Class III or IV</td>
<td>328 (94.3%)</td>
<td>328 (94.0%)</td>
</tr>
<tr>
<td>Previous CABG</td>
<td>148 (42.5%)</td>
<td>152 (43.6%)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>96 (29.4%)</td>
<td>87 (26.8%)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>149 (43.2%)</td>
<td>142 (41.6%)</td>
</tr>
<tr>
<td>STS Score (Mean ± SD)</td>
<td>11.8 ± 3.3</td>
<td>11.7 ± 3.5</td>
</tr>
</tbody>
</table>
All-Cause Mortality (ITT)
All Patients

<table>
<thead>
<tr>
<th>No. at Risk</th>
<th>HR [95% CI]</th>
<th>p (log rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVR</td>
<td>348</td>
<td>1.04 [0.86, 1.24]</td>
</tr>
<tr>
<td>SAVR</td>
<td>351</td>
<td>67.8%</td>
</tr>
</tbody>
</table>

Error Bars Represent 95% Confidence Limits
Median Survival

All Patients

SAVR
40.6 Months

p (log rank) = 0.76

TAVR
44.5 Months

Months
All-Cause Mortality (ITT)
Transfemoral Patients

HR [95% CI] = 0.91 [0.72, 1.14]
p (log rank) = 0.41

Error Bars Represent 95% Confidence Limits
Subgroup Analysis

All-Cause Mortality

<table>
<thead>
<tr>
<th>Group</th>
<th>Sample Size (N)</th>
<th>Hazard Ratio for TAVR</th>
<th>95% CI [L, U]</th>
<th>Interaction p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (N=699)</td>
<td></td>
<td>1.03</td>
<td>[0.85, 1.24]</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 85 (N=358)</td>
<td></td>
<td>1.00</td>
<td>[0.76, 1.30]</td>
<td>0.71</td>
</tr>
<tr>
<td>≥ 85 (N=339)</td>
<td></td>
<td>1.07</td>
<td>[0.82, 1.39]</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (N=399)</td>
<td></td>
<td>1.20</td>
<td>[0.94, 1.54]</td>
<td>0.07</td>
</tr>
<tr>
<td>Female (N=300)</td>
<td></td>
<td>0.84</td>
<td>[0.62, 1.12]</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 25 (N=302)</td>
<td></td>
<td>1.17</td>
<td>[0.90, 1.54]</td>
<td>0.39</td>
</tr>
<tr>
<td>> 25 (N=390)</td>
<td></td>
<td>0.99</td>
<td>[0.76, 1.29]</td>
<td></td>
</tr>
<tr>
<td>STS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 11 (N=353)</td>
<td></td>
<td>0.95</td>
<td>[0.72, 1.26]</td>
<td>0.38</td>
</tr>
<tr>
<td>> 11 (N=346)</td>
<td></td>
<td>1.12</td>
<td>[0.87, 1.45]</td>
<td></td>
</tr>
</tbody>
</table>

TAVR Better

SAVR Better
Subgroup Analysis

All-Cause Mortality

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Hazard Ratio for TAVR</th>
<th>95% CI</th>
<th>Interaction p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (N=699)</td>
<td>1.03</td>
<td>[0.85-1.24]</td>
<td></td>
</tr>
<tr>
<td>Peripheral Vasc. Dis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (N=395)</td>
<td>0.79</td>
<td>[0.62-1.02]</td>
<td><0.01</td>
</tr>
<tr>
<td>Yes (N=291)</td>
<td>1.49</td>
<td>[1.11-2.01]</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (N=360)</td>
<td>1.32</td>
<td>[1.01-1.72]</td>
<td>0.01</td>
</tr>
<tr>
<td>Yes (N=337)</td>
<td>0.76</td>
<td>[0.55-1.04]</td>
<td></td>
</tr>
<tr>
<td>Mod / Sev MR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (N=536)</td>
<td>1.11</td>
<td>[0.89-1.38]</td>
<td>0.11</td>
</tr>
<tr>
<td>Yes (N=133)</td>
<td>0.77</td>
<td>[0.51-1.17]</td>
<td></td>
</tr>
<tr>
<td>Prior CABG or PCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (N=283)</td>
<td>0.85</td>
<td>[0.64-1.14]</td>
<td>0.10</td>
</tr>
<tr>
<td>Yes (N=414)</td>
<td>1.17</td>
<td>[0.91-1.50]</td>
<td></td>
</tr>
<tr>
<td>Implant Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transapical (N = 207)</td>
<td>1.37</td>
<td>[0.98-1.92]</td>
<td>0.05</td>
</tr>
<tr>
<td>Transfemoral (N = 492)</td>
<td>0.91</td>
<td>[0.72-1.14]</td>
<td></td>
</tr>
</tbody>
</table>
All Stroke (ITT)

All Patients

HR [95% CI] = 1.14 [0.68, 1.93]

p (log rank) = 0.61

Error Bars Represent 95% Confidence Limits
NYHA Over Time (ITT)

Survivors

<table>
<thead>
<tr>
<th></th>
<th>TAVR (348)</th>
<th>SAVR (349)</th>
<th>TAVR (250)</th>
<th>SAVR (226)</th>
<th>TAVR (165)</th>
<th>SAVR (145)</th>
<th>TAVR (100)</th>
<th>SAVR (97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NYHA Class I: 94%, 94%, 15%, 15%
- NYHA Class II: 15%, 20%, 13%, 14%
- NYHA Class III: 14%, 15%, 14%, 19%
- NYHA Class IV: 19%

p-values:
- p = 0.64
- p = 0.91
- p = 0.35
- p = 0.93
Mortality and Post Procedural PVL TAVR Patients

M-S 24 16 13 12 7 2
Mild 137 98 84 65 52 11
N-T 158 135 120 105 88 34

p (log rank) = 0.0032

75.7%
73.0%
58.6%
Mortality and None-Trace Total AR
Transfemoral Patients

HR [95% CI] = 0.64 [0.43, 0.95]
p (log rank) = 0.03

Error Bars Represent 95% Confidence Limits

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>TAVR</th>
<th>SAVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>181</td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>137</td>
</tr>
<tr>
<td>24</td>
<td>55</td>
<td>126</td>
</tr>
<tr>
<td>36</td>
<td>51</td>
<td>105</td>
</tr>
<tr>
<td>48</td>
<td>43</td>
<td>78</td>
</tr>
<tr>
<td>60</td>
<td>19</td>
<td>36</td>
</tr>
</tbody>
</table>
Edwards SAPIEN 3 Transcatheter Heart Valve

Enhanced frame geometry for ultra-low delivery profile

Bovine pericardial tissue

Outer skirt minimizes paravalvular leak
Evolution of the Edwards Balloon-Expandable Transcatheter Valves

- Cribier-Edwards
 - 2002
- SAPIEN
 - 2006
- SAPIEN XT
 - 2009
- SAPIEN 3
 - 2013

Sheath compatibility for a 23 mm valve
Edwards Commander Delivery System

- Improved coaxial alignment
- Accurate positioning
 - Distal flex
 - Fine control of valve positioning

<table>
<thead>
<tr>
<th>SAPIEN 3 Valve Size</th>
<th>23 mm</th>
<th>26 mm</th>
<th>29 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards eSheath</td>
<td>14F</td>
<td>14F</td>
<td>16F</td>
</tr>
<tr>
<td>Minimum Access Vessel Diameter</td>
<td>5.5 mm</td>
<td>5.5 mm</td>
<td>6.0 mm</td>
</tr>
</tbody>
</table>
Symptomatic Severe Aortic Stenosis

ASSESSMENT by Heart Valve Team

- **Intermediate Risk Operable (PII S3i)**
 - **ASSESSMENT:** Optimal Valve Delivery Access
 - Transfemoral (TF)
 - TF TAVR SAPIEN 3
 - Transapical / Transaortic (TA/TAo)
 - TAA TAVR SAPIEN 3

- **SAPIEN 3**
 - 2 Single Arm Non-Randomized Historical-Controlled Studies
 - PII A SAVR
 - PII A SAPIEN

- **High Risk Operable / Inoperable (PII S3HR)**
 - **ASSESSMENT:** Optimal Valve Delivery Access
 - Transfemoral (TF)
 - TF TAVR SAPIEN 3
 - Transapical / Transaortic (TA/TAo)
 - TAA TAVR SAPIEN 3

n = 1076 Patients

n = 583 Patients
Study Flow: S3HR & S3i
30 Day Patient Status

S3HR
- n = 583
- 13 Deaths
- n = 570
 - SAPIEN 3
 - 0 Withdrawal
 - 3 LTFU
 - 567 / 570 or 99.5% follow-up visits performed at 30 Days

S3i
- n = 1076
- 12 Deaths
- n = 1064
 - SAPIEN 3
 - 0 Withdrawal
 - 5 LTFU
 - 1059 / 1064 or 99.5% follow-up visits performed at 30 Days
Baseline Patient Characteristics
S3HR Patients

Average STS = 8.6% (Median 8.4%)
Average Age = 82.6yrs

N = 583
Mortality and Stroke: S3HR
At 30 Days (As Treated Patients)

Mortality
- All-Cause
- Cardiovascular

Stroke
- All Stroke
- Disabling

O:E = 0.26
(STS 8.6%)
Mortality: S3HR & S3i
At 30 Days (As Treated Patients)

Transfemoral

<table>
<thead>
<tr>
<th></th>
<th>All-Cause</th>
<th>Cardiovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3HR</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>S3i</td>
<td>1.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Transapical / Transaortic

<table>
<thead>
<tr>
<th></th>
<th>All-Cause</th>
<th>Cardiovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3HR</td>
<td>5.4</td>
<td>3.3</td>
</tr>
<tr>
<td>S3i</td>
<td>1.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
All-Cause Mortality at 30 Days
Edwards SAPIEN Valves (As Treated Patients)

PARTNER I and II Trials
Overall and TF Patients

<table>
<thead>
<tr>
<th>SAPIEN</th>
<th>SXT</th>
<th>SAPIEN 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1B (TF)</td>
<td>6.3%</td>
<td>2.2%</td>
</tr>
<tr>
<td>P1A (All)</td>
<td>5.2%</td>
<td>1.6%</td>
</tr>
<tr>
<td>P1A (TF)</td>
<td>3.7%</td>
<td>1.1%</td>
</tr>
<tr>
<td>P2B (TF)</td>
<td>4.5%</td>
<td>1.1%</td>
</tr>
<tr>
<td>S3HR (All)</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>S3HR (TF)</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>S3i (All)</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>S3i (TF)</td>
<td>1.1%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
</tr>
<tr>
<td>344</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>271</td>
</tr>
<tr>
<td>282</td>
</tr>
<tr>
<td>583</td>
</tr>
<tr>
<td>491</td>
</tr>
<tr>
<td>1072</td>
</tr>
<tr>
<td>947</td>
</tr>
</tbody>
</table>
CoreValve® Valve-in-Valve

The following presentation outlines best practices and procedural considerations for the implantation for the CoreValve® System in failed stented aortic bioprostheses.
CoreValve US Pivotal Trial
High Risk 2-Year Results
Patient Flow

As-Treated Population
N=750

Underwent Attempted TAVR
N=391

Underwent Attempted SAVR
N=359

1-Year TAVR
N=323/328
(98.5%)

1-Year SAVR
N=265/281
(94.3%)

Died-28
Exited-3
Pending follow-up-2

2-Year TAVR
N=278/295
(94.2%)

2-Year SAVR
N=221/237
(93.2%)

Died-31
Exited-13
All-Cause Mortality

<table>
<thead>
<tr>
<th>Months Post-Procedure</th>
<th>Transcatheter</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>391</td>
<td>359</td>
</tr>
<tr>
<td>6</td>
<td>378</td>
<td>343</td>
</tr>
<tr>
<td>12</td>
<td>354</td>
<td>304</td>
</tr>
<tr>
<td>18</td>
<td>334</td>
<td>282</td>
</tr>
<tr>
<td>24</td>
<td>219</td>
<td>191</td>
</tr>
</tbody>
</table>

Δ = 4.8

Log-rank P = 0.04
Major Stroke

Log-rank $P=0.25$

No. at Risk

<table>
<thead>
<tr>
<th>Transcatheter</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>391</td>
<td>359</td>
</tr>
<tr>
<td>368</td>
<td>335</td>
</tr>
<tr>
<td>345</td>
<td>296</td>
</tr>
<tr>
<td>326</td>
<td>271</td>
</tr>
<tr>
<td>214</td>
<td>184</td>
</tr>
</tbody>
</table>
MACCE

- Transcatheter
- Surgical

Δ = 8.9

38.6%

Δ = 6.5

27.0%

Log-rank P=0.01

29.7%

No. at Risk

<table>
<thead>
<tr>
<th>Transcatheter</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>391</td>
<td>359</td>
</tr>
<tr>
<td>361</td>
<td>322</td>
</tr>
<tr>
<td>329</td>
<td>280</td>
</tr>
<tr>
<td>309</td>
<td>254</td>
</tr>
<tr>
<td>197</td>
<td>166</td>
</tr>
</tbody>
</table>
All-Cause Mortality STS ≤7%

- Transcatheter
- Surgical

Δ = 11.3
26.3%
15.0%
Δ = 3.6
14.0%
10.4%
Log-rank P=0.01

No. at Risk
Transcatheter
Surgical
0 202 181
6 197 174
12 191 161
18 182 151
24 128 93
Conclusions

At 2 years for patients with symptomatic severe AS at increased risk of surgery;

- The superior survival seen at 1 year for TAVR over SAVR is maintained
- All stroke was less with TAVR over SAVR but major stroke showed no difference
- MACCE was significantly less with TAVR over SAVR
- Hemodynamics were superior for TAVR over SAVR at all time points without any structural valve failure
- Post-procedural AR showed a decrease in the TAVR group between 30 days and 1 year and this low level of moderate or severe PVL was maintained at 2 years
- TAVR was favored in every subgroup analysis
European Experience
TAVR in lower risk patients
It’s already happened!
Retrospective Risk-Stratification

Lower risk patients have favorable outcomes
Improvements in Transcatheter Aortic Valve Implantation Outcomes in Lower Surgical Risk Patients

A Glimpse Into the Future

Ruediger Lange, MD, PhD, Sabine Bleiziffer, MD, Domenico Mazzitelli, MD, Yacine Elhmidi, MD, Anke Opitz, MD, Marcus Krane, MD, Marcus-André Deutsch, MD, Hendrik Ruge, MD, Gernot Brockmann, MD, Bernhard Voss, MD, Christian Schreiber, MD, Peter Tassani, MD, PhD, Nicolo Piazza, MD, PhD

Munich, Germany
TAVR in lower risk patients
Outcomes are better

<table>
<thead>
<tr>
<th></th>
<th>Higher Risk (n=105)</th>
<th>Lower Risk (n=105)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS (%)</td>
<td>7.13 ± 5.4</td>
<td>4.8 ± 2.6</td>
</tr>
<tr>
<td>Log EuroSCORE (%)</td>
<td>25.44 ± 16.0</td>
<td>17.8 ± 12.0</td>
</tr>
<tr>
<td>30 Day Mortality (%)</td>
<td>11.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Total Vascular Complications (%)</td>
<td>28.6</td>
<td>14.7</td>
</tr>
<tr>
<td>Stroke / TIA (%)</td>
<td>6.7</td>
<td>1</td>
</tr>
</tbody>
</table>

1Lange, et al., *J Am Coll Cardiol* 2012; 59: 280-7
2Wenaweser, et al., *Eur Heart J* 2013; 34: 1894-905
CoreValve Advance Registry
STS < 7% vs. STS > 7%
Baseline Characteristics

CoreValve ADVANCE Registry

<table>
<thead>
<tr>
<th>Characteristic, % or mean ± SD</th>
<th>All Patients N=995</th>
<th>STS ≤7 N=697</th>
<th>STS >7 N=298</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>81.1 ± 6.4</td>
<td>80.0 ± 6.4</td>
<td>83.5 ± 5.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>50.7</td>
<td>46.1</td>
<td>61.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Logistic EuroSCORE</td>
<td>19.3 ± 12.3</td>
<td>16.0 ± 9.6</td>
<td>27.1 ± 14.2</td>
<td><0.001</td>
</tr>
<tr>
<td>STS</td>
<td>6.4 ± 4.4</td>
<td>4.3 ± 1.5</td>
<td>11.3 ± 5.0</td>
<td><0.001</td>
</tr>
<tr>
<td>NYHA III or IV</td>
<td>80.0</td>
<td>76.3</td>
<td>88.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>31.2</td>
<td>29.2</td>
<td>35.8</td>
<td>0.041</td>
</tr>
<tr>
<td>CAD</td>
<td>57.8</td>
<td>56.4</td>
<td>60.9</td>
<td>0.185</td>
</tr>
<tr>
<td>PVD</td>
<td>19.9</td>
<td>17.7</td>
<td>25.1</td>
<td>0.007</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>13.3</td>
<td>11.3</td>
<td>17.9</td>
<td>0.005</td>
</tr>
<tr>
<td>Pulmonary Hypertension</td>
<td>12.9</td>
<td>11.1</td>
<td>16.9</td>
<td>0.015</td>
</tr>
<tr>
<td>COPD</td>
<td>22.8</td>
<td>17.1</td>
<td>36.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Creatinine Clearance < 20ml/min</td>
<td>14.4</td>
<td>10.2</td>
<td>24.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>33.6</td>
<td>30.6</td>
<td>40.5</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*p STS ≤7 vs. >7
2-Year All-Cause Mortality
CoreValve ADVANCE Registry

P-value (log rank) <0.01

CoreValve ADVANCE Study
European Experience
Durability
Studies reporting no valve failures at 1, 2 and 3 years

• Gurvitch et al. Circulation 2010;122:1319-27
• Buellesfeld et al. JACC 2011;57:1650-1657
• Ussia et al. Eur Heart J 2012;33:969-976
• Ussia et al. EuroIntervention 2012;7:1285-1292
• Kodali et al. NEJM 2012;366:1686-1695
• Nietlispach et al. JACC Cardiovasc Interv 2012;5:582-590 (autopsy 20 pts)
Global Valve in Valve Registry

Patients undergoing VIV procedures in 55 sites in Europe, North-America, Australia, New Zealand and Israel (n=593)

Isolated Mitral VIV / VIR (n=134)

Aortic VIV procedures (n=459)

Medtronic CoreValve (n=213)

Edwards Sapien (n=246)

Kornowski, EuroPCR 2013
Baseline Demographics at Time of VIV

<table>
<thead>
<tr>
<th></th>
<th>CoreValve</th>
<th>SAPIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=213)</td>
<td>(n=246)</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>77.6 ± 10.0</td>
<td>77.6 ± 9.7</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>53.1%</td>
<td>59.0%</td>
</tr>
<tr>
<td>LogEuroSCORE</td>
<td>31.1 ± 16.8</td>
<td>33.0 ± 18.9</td>
</tr>
<tr>
<td>STS score (%)</td>
<td>12.8 ± 10.6</td>
<td>11.9 ± 9.2</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>31.1%</td>
<td>26.5%</td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>17.9%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Chronic Renal Failure</td>
<td>38.0%</td>
<td>57.3%</td>
</tr>
<tr>
<td>Previous CVA</td>
<td>12.2%</td>
<td>11.3%</td>
</tr>
<tr>
<td>NYHA III/IV</td>
<td>93.9%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>

Median time from SAVR to VIV TAVI was 9 yrs (IQR 6-12)

Kornowski, EuroPCR 2013
Choice of the patient
PARTNER I A
Mortality Surgery versus TAVR

HR [95% CI] = 0.93 [0.74, 1.15]
p (log rank) = 0.483
Primary Endpoint: 1 Year All-cause Mortality

Surgical: 19.1% at 12 months
Transcatheter: 14.2% at 12 months

P = 0.04 for superiority

No. at Risk
Surgical: 357 at 0 months, 341 at 12 months
Transcatheter: 390 at 0 months, 377 at 12 months
Conclusions-1

• A systematic fall in surgical risk scores is evident (Europe > US)

• “Lower” risk patients are currently being treated (Europe > US)

• Patients with lower risk scores may have other reasons not to undergo surgery
Conclusion-2

• Clinical outcomes in patients with lower surgical risk scores are excellent

• Offering TAVR to intermediate surgical risk patients is justified if performed within the confines of a Heart Team

• Appropriate surgical and TAVR risk scores are lacking and may provide physicians better guidance in the treatment of patients